Feed intake, microbial adherence and fibrolytic activity in residues of forage samples incubated in the rumen of sheep fed grass forages and/or a total mixed ration

Author:

Pérez-Ruchel A.,Repetto J. L.,Cajarville C.ORCID,Mezzomo M. P.,Kozloski G. V.ORCID

Abstract

Three male sheep were fed, throughout three experimental periods, with either only forage, only total mixed ration (TMR) or a mixed diet (TMR + forage). The rich-fibre ingredients of each diet were incubated daily in situ for three days and the ruminal pH was measured every 2 h during the last day of each experimental period. Rumen pH decreased at increased proportion of TMR in diet (P < 0.05). The dry matter (DM) degradability of the grass forage was higher (P < 0.05) in animals receiving only forage than in those receiving the mixed diet whereas the DM degradability of the corn silage was higher (P < 0.05) in animals receiving the mixed diet than in those receiving only TMR. The level of microbial adherence in residues of grass forage was higher (P < 0.05) in animals fed with only forage than in those fed with the mixed diet and, the level of microbial adherence in residue of corn silage was higher (P < 0.05) in animals receiving the mixed diet than in those receiving TMR. The carboxymethylcellulase activity in residues of grass forage was higher (P < 0.05) in sheep fed the mixed diet whereas not significant effect of diet type was observed for this variable in residues of corn silage. In conclusion, increased inclusion of TMR in sheep diet showed a negative impact on microbial adherence and forage degradability in situ, an effect mediated by changes in rumen pH which was not compensated by increased fibrolytic activity.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3