Cow responses and evolution of the rumen bacterial and methanogen community following a complete rumen content transfer

Author:

De Mulder T.ORCID,Vandaele L.,Peiren N.,Haegeman A.,Ruttink T.,De Campeneere S.,Van De Wiele T.,Goossens K.

Abstract

AbstractUnderstanding the rumen microbial ecosystem requires the identification of factors that influence the community structure, such as nutrition, physiological condition of the host and host–microbiome interactions. The objective of the current study was to describe the rumen microbial communities before, during and after a complete rumen content transfer. The rumen contents of one donor cow were removed completely and used as inoculum for the emptied rumen of the donor itself and three acceptor cows under identical physiological and nutritional conditions. Temporal changes in microbiome composition and rumen function were analysed for each of four cows over a period of 6 weeks. Shortly after transfer, the cows showed different responses to perturbation of their rumen content. Feed intake depression in the first 2 weeks after transfer resulted in short-term changes in milk production, methane emission, fatty acid composition and rumen bacterial community composition. These effects were more pronounced in two cows, whose microbiome composition showed reduced diversity. The fermentation metrics and microbiome diversity of the other two cows were not affected. Their rumen bacterial community initially resembled the composition of the donor but evolved to a new community profile that resembled neither the donor nor their original composition. Descriptive data presented in the current paper show that the rumen bacterial community composition can quickly recover from a reduction in microbiome diversity after a severe perturbation. In contrast to the bacteria, methanogenic communities were more stable over time and unaffected by stress or host effects.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3