The effect of dicyandiamide addition to cattle slurry on soil gross nitrogen transformations at a grassland site in Northern Ireland

Author:

McGEOUGH K. L.,MÜLLER C.,LAUGHLIN R. J.,WATSON C. J.,ERNFORS M.,CAHALAN E.,RICHARDS K. G.

Abstract

SUMMARYMany studies have shown the efficacy of the nitrification inhibitor dicyandiamide (DCD) in reducing nitrous oxide (N2O) emissions and nitrate (NO3) leaching. However, there is no information on the effect of DCD on gross soil N transformations under field conditions, which is key information if it is to be used as a mitigation strategy to reduce N losses. The current field study was conducted to determine the effect of DCD on ten gross nitrogen (N) transformations in soil following cattle slurry (CS) application to grassland in Northern Ireland on three occasions (June 2010, October 2010 and March 2011).Ammonium (NH4+) oxidation (ONH4) was the dominant process in total NO3 production (ONH4+ONrec (oxidation of recalcitrant organic N to NO3)) following CS application, accounting for 0·894–0·949. Dicyandiamide inhibited total NO3 production from CS by 0·781, 0·696 and 0·807 in June 2010, October 2010 and March 2011, respectively. The lower inhibition level in October 2010 was thought to be due to the higher rainfall and soil moisture content in that month compared to the other application times. As DCD strongly inhibited NH4+ oxidation following CS application, it also decreased the rate of total NO3 consumption, since less NO3 was formed. The rates of mineralization from recalcitrant organic-N (MNrec) were higher than from labile organic-N (MNlab) on all occasions. The DCD significantly increased total mineralization (MNrec+MNlab) following CS application in June 2010 and March 2011, but had no significant effect in October 2010. In contrast, the rate of immobilization of labile organic-N (INH4_Nlab) was higher than from recalcitrant organic-N (INH4_Nrec) on all occasions, accounting for 0·878–0·976 of total NH4+ immobilization from CS. The DCD significantly increased total immobilization (INH4_Nrec+INH4_Nlab) when CS was applied in June 2010, but had no significant effect at other times of the year.Dicyandiamide was shown to be a highly effective inhibitor of ammonium oxidation at this grassland site. Although there was evidence that it increased both NH4+ mineralization and immobilization following CS application, its effect on these processes was inconsistent. Further work is required to understand the reason for these inconsistent effects: future improvements in 15N tracer models may help.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3