The effect of irrigation and sowing date on crop yield and yield components of Kabuli chickpea (Cicer arietinum L.) in a cool-temperate subhumid climate

Author:

ANWAR M. RAJIN,McKENZIE B. A.,HILL G. D.

Abstract

The canopy development, radiation absorption and its utilization for biomass production in response to irrigation at different growth stages of three Kabuli chickpea (Cicer arietinum L.) cultivars was studied on a Wakanui silt loam soil in Canterbury, New Zealand (43°38S, 172°30E). The study also aimed at quantifying the yield potential of the crop under varying irrigation regimes and sowing dates. Green area duration (GAD), intercepted radiation (Fi), radiation use efficiency (U) and total intercepted PAR were significantly (P<0·001) increased by irrigation. Total dry matter (TDM) yield was more strongly correlated (R2=0·69–0·83) with GAD than seed yield (R2=0·60–0·69). Accumulation of TDM was highly related to intercepted PAR. Fully irrigated November-sown crops had a final U of 1·46 g DM/MJ PAR. The unirrigated crop had a U of only 0·92 g DM/MJ PAR. The U tended to decrease with delayed sowing.Averaged over the 2 years, irrigation increased seed yield by 74–124% and trends were similar for TDM yield. Seed yield was doubled in November-sown chickpeas (4·6 t/ha) and cv. Sanford produced 14 and 16% more seed than cvs Dwelley and B-90 respectively. Full irrigation from emergence to physiological maturity always gave the highest seed yield (>4·7 t/ha), and there was no indication of a critical period of sensitivity to water stress. Based on results collected in the first growing season a simple model relating seed yield to radiation interception, U and HI was made. Results from the second growing season were then used as a simple verification to test the accuracy of predictions. The results suggest that these varieties have the potential to yield more than 4·5 t/ha of seed in Canterbury.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3