Screening and identification of tobacco mutants resistant to tobacco and cucumber mosaic viruses

Author:

SHEN L. L.,SUN H. J.,QIAN Y. M.,CHEN D.,ZHAN H. X.,YANG J. G.,WANG F. L.

Abstract

SUMMARYDeploying resistant cultivars is an economical and essential management method in controlling viral diseases, and there are several mutational resources for tobacco. In the present study, the inoculation of tobacco plants with tobacco viruses was performed in a greenhouse from 2011 to 2014 to identify mutants resistant to tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). The high-throughput screening included seeding uniformly, transplanting in seedbeds, inoculating by cloth brushes and reporting symptoms based on disease indices. A total of 4000 second generation segregating (M2) mutants of tobacco cultivar Zhongyan100 were screened. Seeds from highly resistant mutant M2 plants were selected and planted separately. The M3 were grown and mutational stability was measured. For TMV, ten highly resistant plants were selected in the M2 generation and the mutation rate was 0·012%. In the M3 generation, there were seven mutants with hereditary high resistance and, according to the results of real-time polymerase chain reaction, the N gene was detected in all seven M3. Two hereditary immune M4 mutants, one of which was a male sterile line, were identified and evaluated in the glasshouse and in the field. For CMV, seven highly resistant plants were selected from the M2 generation and the mutation rate was 0·009%. In the M3 generation, there was one mutant with hereditary high resistance. The results indicate that hereditary mutants may be identified in the M4 generation and back-crossed to wild-type Zhongyan100 to identify anti-viral genes.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3