Non-destructive discrimination of conventional and glyphosate-resistant soybean seeds and their hybrid descendants using multispectral imaging and chemometric methods

Author:

LIU C.,LIU W.,LU X.,CHEN W.,CHEN F.,YANG J.,ZHENG L.

Abstract

SUMMARYSoybean is an important oil- and protein-producing crop and over the last few decades soybean genetic transformation has made rapid strides. The probability of occurrence of transgene flow should be assessed, although the discrimination of conventional and transgenic soybean seeds and their hybrid descendants is difficult in fields. The feasibility of non-destructive discrimination of conventional and glyphosate-resistant soybean seeds and their hybrid descendants was examined by a multispectral imaging system combined with chemometric methods. Principal component analysis (PCA), partial least squares discriminant analysis (PLSDA), least squares-support vector machines (LS-SVM) and back propagation neural network (BPNN) methods were applied to classify soybean seeds. The current results demonstrated that clear differences among conventional and glyphosate-resistant soybean seeds and their hybrid descendants could be easily visualized and an excellent classification (98% with BPNN model) could be achieved. It was concluded that multispectral imaging together with chemometric methods would be a promising technique to identify transgenic soybean seeds with high efficiency.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3