Thein vitrodigested cell wall and fermentation characteristics of grasses as affected by temperature and humidity during their growth

Author:

Moir K. W.,Wilson J. R.,Blight G. W.

Abstract

SUMMARYTotal cell wall,in vitrodigested cell wall and fermentation-gas production were determined in the separated tops and stubble of five tropical and two temperate grass species grown under controlled temperatures and humidities. As the day/night temperatures increased from 18/10 to 25/17 °C the total cell wall andin vitrodigested cell wall increased. With a further increase to 32/24 °C the total cell wall increased, but not thein vitrodigested cell wall.In vitrodigested cell-wall values were also calculated from a previously derived relationship betweenin vitrodigested cell wall and total cell wall. The differences between observed and calculated values increased (negatively) with increasing growth temperature suggesting that thein vitrodigested cell wall was depressed with increasing growth temperatures, but the extent of this depression was small.In vitrogas production from the fermentation of plant tops or stubble in buffered rumen fluid for 24 h was significantly affected by growth temperature and humidity, apparently because of changes in chemical composition induced by the treatments. The volume of gas produced between 24 and 48 h fermentation times was appreciably lower from stubble than from plant tops and this was thought to be due to a higher resistance of part of the cell wall of stubble to digestion by rumen bacteria. Gas production in this period was slightly lower in the tops of grasses grown at the lower temperatures, but this could have been an indirect effect from an associated decrease in the total cell wall.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3