Integration of measures to mitigate reactive nitrogen losses to the environment from grazed pastoral dairy systems

Author:

MONAGHAN R. M.,DE KLEIN C. A. M.

Abstract

SUMMARYThe need for nitrogen (N) efficiency measures for dairy systems is as great as ever if we are to meet the challenge of increasing global production of animal-based protein while reducing N losses to the environment. The present paper provides an overview of current N efficiency and mitigation options for pastoral dairy farm systems and assesses the impact of integrating a range of these options on reactive N loss to the environment from dairy farms located in five regions of New Zealand with contrasting soil, climate and farm management attributes. Specific options evaluated were: (i) eliminating winter applications of fertilizer N, (ii) optimal reuse of farm dairy effluent, (iii) improving animal performance through better feeding and using cows with higher genetic merit, (iv) lowering dietary N concentration, (v) applying the nitrification inhibitor dicyandiamide (DCD) and (vi) restricting the duration of pasture grazing during autumn and winter. The Overseer®Nutrient Budgeting model was used to estimate N losses from representative farms that were characterized based on information obtained from detailed farmer surveys conducted in 2001 and 2009. The analysis suggests that (i) milk production increases of 7–30% were associated with increased N leaching and nitrous oxide (N2O) emission losses of 3–30 and 0–25%, respectively; and (ii) integrating a range of strategic and tactical management and mitigation options could offset these increased N losses. The modelling analysis also suggested that the restricted autumn and winter grazing strategy resulted in some degree of pollution swapping, with reductions in N leaching loss being associated with increases in N loss via ammonia volatilization and N2O emissions from effluents captured and stored in the confinement systems. Future research efforts need to include farm systems level experimentation to validate and assess the impacts of region-specific dairy systems redesign on productivity, profit, environmental losses, practical feasibility and un-intended consequences.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Reference39 articles.

1. Quantification of reductions in ammonia emissions from fertiliser urea and animal urine in grazed pastures with urease inhibitors for agriculture inventory: New Zealand as a case study

2. Efficacy of Natural Wetlands to Retain Nutrient, Sediment and Microbial Pollutants

3. The temperature dependence of dicyandiamide (DCD) degradation in soils: A data synthesis

4. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions

5. Wheeler D. , Cichota R. , Snow V. & Shepherd M. A. (2011). A revised leaching model for OVERSEER® Nutrient Budgets. Adding to the Knowledge Base for the Nutrient Manager (Ed. L. D. Currie & C. L. Christensen ), pp. 1–6. Occasional Report No. 24. Palmerston North, New Zealand: Fertilizer and Lime Research Centre, Massey University. Available online from: http://flrc.massey.ac.nz/workshops/11/paperlist11.htm (accessed November 2013).

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3