Genetic effects of the critical factors of sugary1 fitness

Author:

DJEMEL A.,ORDÁS B.,HANIFI-MEKLICHE L.,KHELIFI L.,ORDÁS A.,REVILLA P.

Abstract

SUMMARYThe present study was designed to estimate the effects of the mutant su1 on the genetic regulation of fitness-related traits when introgressed into field maize backgrounds. Estimated genetic effects of agronomic traits in Su1 v. su1 plants were monitored in two separate mean generation designs. The first involved unrelated inbred lines EP42 and A631, while two Corn Belt inbred lines, A619 and A632, were used for the second design. Parents, F1s, F2s and backcrosses were crossed to the su1 inbred P39 as the donor of su1 and the 12 crosses were successively self-pollinated for 5 years. For each cross, Su1 and su1 kernels were evaluated separately in a growth chamber under controlled environmental conditions following a randomized complete block design. In addition, the genotypes were evaluated in field trials in 10 × 10 triple lattice designs during 2010 and 2011 at Pontevedra in north-western Spain; and in 2010 at Algiers, located in the sub-humid North of Algeria. The performance of su1 plants was lower when compared to the Su1 plants for all traits evaluated in both designs and across environments. The estimates of genetic effects of Su1 v. su1 plants were strongly affected by genotype and environment. The results suggest that, depending on specific sweet × field maize interaction, seedling vigour and, particularly, chlorophyll content (CCM) were the most critical traits in determining su1 viability. However, the complexity of the genetic regulation of emergence and the great heterogeneity of environmental conditions in the field evaluation prevent the estimation of the genetic regulation on sugary1 fitness.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3