Effects of sowing date, plant density and year on growth and yield of Brussels sprouts (Brassica oleracea var. bullata subvar. gemmifera)

Author:

Abuzeid A. E.,Wilcockson S. J.

Abstract

SummaryIn field experiments in 1983–85 in Northumberland, UK, early sowings achieved a leaf area index (LAI) of 3·5, capable of intercepting 90–95% total incident solar radiation, earlier than late sowings. As there was a close relationship between total dry weight, bud dry weight and amount of intercepted solar radiation, early sowings invariably outyielded later ones. The efficiency of energy conversion of radiation was 1·28, 2·05 and 2·11 g/MJ for total dry weight and 0·97, 0·83 and 0·67 g/MJ for bud dry weight in 1983, 1984 and 1985, respectively. Harvest index ranged from ca. 25% in 1985 to 40% in 1984.Increasing plant density from 2·22 to 6·66 plants/m2 advanced and increased maximum LAI and total and bud dry weight per m2 but had an adverse effect on distribution of dry matter. Maximum total dry weights were achieved at or slightly after maximum LAI. The onset of rapid bud growth coincided with maximum total standing dry weight and was advanced by early sowing but largely unaffected by plant density.Early-sown crops produced more buds than late-sown ones because of a longer growing season. Plant density had a large effect on the number of buds per m2, which was almost directly proportional as the number of buds per plant was not severely affected. However, individual bud size was restricted as a result of competition for assimilates. Approximately 80% of buds finally recorded had been produced before significant bud growth had occurred.Total bud fresh yields averaged over all sowing dates reached 17 t/ha in 1983 and 31 t/ha in 1984. The lower yield in 1983 was the result of late sowing caused by unfavourable weather. Early sowings significantly outyielded late ones because of earlier onset of rapid bud growth which gave a longer growing period. The effect of plant density on total sprout yield was less pronounced than that of sowing date but effects on yield per plant were large.Yields of buds in the freezing grade (20–30 mm) increased rapidly between late September and early to mid-November in both 1983 and 1984 and reached 7·5 and 8·8 t/ha, respectively. The difference between freezing-grade yields in the two years (1·3 t/ha) was much less than the difference between total yields (14 t/ha). Late sowing in 1983 restricted bud growth resulting in a higher proportion in the freezing grade. Plant density had a greater effect on freezing-grade yield than on total yield. Low planting densities gave high yields of small buds at early harvests but denser planting gave higher yields at later harvests. Generally, increases in bud fresh weight over the harvest period were greater than those in bud dry weight because of water uptake. The average dry matter content of buds declined by 2–5 % from October to January.The experiments confirmed that manipulation of sowing date and planting density is an effective way of spreading harvest date throughout the season in order to achieve an orderly sequence of crops for the fresh market and for processing.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Crop Agronomy;Crop Production Science in Horticulture;2024-01-19

2. Effect of Biofertilizer and Drought Stress on Quantitative and Qualitative Traits in Some Winter Rapeseed (Brassica napus L.) Cultivars;Romanian Agricultural Research;2023

3. Nitrogen efficiency of Brussels sprouts under different organic N fertilization rates;Scientia Horticulturae;2012-02

4. Bud initiation and optimum harvest date in Brussels sprouts;Scientia Horticulturae;1999-09

5. 11 Physiology;Developments in Plant Genetics and Breeding;1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3