Changes in the baseline of the Crop Water Stress Index for lucerne (Medicago sativa) over 3 years

Author:

Rechel E. A.,DeTar W. R.,Ballard D.

Abstract

SUMMARYThe ability to detect and measure water stress accurately is critical for optimizing crop production. The Crop Water Stress Index (CWSI), the linear relationship of the difference between foliage and air temperatures as a function of the air vapour pressure deficit, is one widely used method. Under well-watered conditions, a ‘baseline’ is derived that is crop specific and presumed fairly constant, despite differences in development and physiology. This study reports changes in the baseline of the CWSI for lucerne crops not subjected to water shortage over 3 years. Studies of lucerne in California from April 1986 to October 1988 used the CWSI to plan irrigations. It was necessary to re-establish the baseline periodically throughout the experiment. In the first year it was similar to that reported in the literature, but in the second year it had a statistically significant steeper slope and higher intercept. In the third year, the regression equation was similar to that in the first year. The changes in the baseline are thought to be a result of crop age rather than year-to-year weather fluctuations. The baseline needs to be determined periodically as the crop matures, to ensure accurate interpretation of plant water stress.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Reference12 articles.

1. Chemical composition of herbage with advance in maturity of alfalfa, medium red clover, ladino clover, and birdsfoot trefoil;Smith;Wisconsin Agricultural Experiment Station Research Report,1964

2. Crop‐Specific Thermal Kinetic Windows in Relation to Wheat and Cotton Biomass Production

3. Fine Root Development of Alfalfa as Affected by Wheel Traffic

4. Normalizing the stress-degree-day parameter for environmental variability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Approach of Canopy Temperature based Irrigation Scheduling of Wheat in Humid Subtropical Climate of India;Proceedings of the National Academy of Sciences, India Section B: Biological Sciences;2016-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3