Efficacy of spent blewit mushroom compost andBacillus aryabhattaicombination on control of Pythium damping-off in cucumber

Author:

CHEN J. T.,LIN M. J.,HUANG J. W.

Abstract

SUMMARYPythium damping-off caused byPythium aphanidermatumusually occurs in commercial nurseries of cucumber seedlings. The purpose of the present study was to develop a container medium for effectively suppressing Pythium damping-off of cucumber seedlings. Seven agricultural materials were tested for their suitability as substrates for the growth of cucumber seedlings. Bas Van Burren No. 4 peat moss (BVB) was able to promote the growth of cucumber seedlings, but it was ineffective against Pythium damping-off. Spent blewit mushroom compost (SBMC) was an available substrate that could inhibitP. aphanidermatum, but it also inhibited the growth of cucumber seedlings slightly. A cultural medium, spent blewit peat compost (SBPC), containing 50% (v/v) SBMC, 50% (v/v) BVB and 0·3% (w/v) lime was consequently formulated. The SBPC was able to promote the growth of cucumber seedlings and reduce the incidence of Pythium damping-off. A total of 20 micro-organisms were isolated from SBMC compost and screened in steamed SBPC medium for their ability to inhibit the growth ofP. aphanidermatum. Among these,Bacillus aryabhattaiisolate number CB13 was able to suppressP. aphanidermatumsignificantly in the steamed SBPC medium. Thus, bio-formulation of SBPC medium with the beneficial microbeB. aryabhattaiCB13 was carried out. The incidence of Pythium damping-off was reduced from 58% in steamed SBPC medium to 4% in the bio-formulated container medium. The novel bio-formulation has high potential for controlling Pythium damping-off in commercial nurseries.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3