Unsaturated water transmission characteristics of soils in relation to texture, aggregate size and initial moisture content

Author:

Mundra M. C.,Pal Raj,Siyag R. S.,Poonia S. R.

Abstract

SummaryTo study the effect of soil texture, aggregate size and initial moisture content on soil water diffusivity, D(θ), and unsaturated hydraulic conductivity, K(θ), horizontal absorption experiments were conducted on samples of loamy sand, sandy loam and clay–loam soils as well as on artificially prepared water-stable aggregates of a clay–loam sample (sizes 0.·25–0–25, 0·25–0·5, 0·5–1, 1–2, and 2–4 mm). For comparable moisture contents, D(θ) followed the order loamy sand > sandy loam > clay–loam. The effect of initial moisture content on D(θ) varied with soil texture. K(θ), which was evaluated using D(θ) for air-dry initial moisture content and the slopes of the water retention curves, also varied with soil texture.The D(θ) function for air-dry initial moisture content increased with the decrease in aggregate size, the increase being more pronounced below a size of 1 mm. Values of D(θ) obtained from initially airdry soil and at 10% of saturation moisture content did not differ greatly from one another. The K(θ) function was almost the same for aggregate sizes 1–2 and 2–4 mm. In the size ranges of < 1 mm, K(θ) increased with the decrease in aggregate size. The particle/aggregate size range of 0·1–0·5 mm was the most conducive to unsaturated water flow.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Water flow and conductivity into capillary and non-capillary pores of soils;Journal of soil science and plant nutrition;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3