Modelling the effects of stocking rate, soil type, agroclimate location and nitrogen input on the grass DM yield and forage self-sufficiency of Irish grass-based dairy production systems

Author:

Ruelle E.ORCID,Delaby L.,Shalloo L.,O'Donovan M.,Hennessy D.ORCID,Egan M.,Horan B.,Dillon P.

Abstract

AbstractIn pasture-based dairy production systems, identifying the appropriate stocking rate (SR; cows/ha) based on the farm grass growth is a key strategic decision for driving the overall farm business. This paper investigates a number of scenarios examining the effects of SR (2–3 cows/ha (0.25 unit changes)), annual nitrogen (N) fertilizer application rates (0–300 kg N/ha (50 kg/ha unit changes)), soil type (heavy and a free-draining soil) and agroclimate location ((south and northeast of Ireland) across 16 years) on pasture growth and forage self-sufficiency using the pasture-based herd dynamic milk model merged with the Moorepark St Gilles grass growth model. The modelled outputs were grass growth, grass dry matter intake, silage harvested and offered, overall farm forage self-sufficiency and N surplus. The model outputs calculated that annual grass yield increased from 9436 kg DM/ha/year when 0 kg N/ha/year was applied to 14 996 kg DM/ha/year when 300 kg N/ha/year were applied, with an average N response of 18.4 kg DM/kg N applied (range of 9.9–27.7 kg DM/kg N applied). Systems stocked at 2.5 cows/ha and applying 250–300 kg N fertilizer/ha/year were self-sufficient for forage. As N input was reduced from 250 kg N/ha/year, farm forage self-sufficiency declined, as did farm N surplus. The results showed that a reduction in N fertilizer application of 50 kg/ha/year will require a reduction in an SR of 0.18 cows/ha to maintain self-sufficiency (R2 = 0.90).

Funder

Irish Dairy Levy Trust

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3