Differential influence of legume and cereal crop residue incorporation on methane production and consumption in a tropical vertisol

Author:

Shivran Mamta,Kollah Bharati,Parmar Rakesh,Devi Mayanglambam Homeshwari,Bajpai Apekcha,Atoliya Nagvanti,Sahu Asha,Dubey Garima,Mohanty Santosh RanjanORCID

Abstract

Crop residue incorporation to the soil is an essential strategy to improve soil quality and crop productivity in order to attain sustainable development goals. Experiments were conducted to evaluate the differential effect of crop residues on CH4 production and consumption in a tropical vertisol. Soils were incubated with residues of cereals (maize and wheat) and legumes (chickpea and soybean) at 1% w/w, under non-flooded and flooded conditions to estimate CH4 consumption and CH4 production rates, respectively. Rates of CH4 production (ng CH4 produced g/soil/day) varied from 0.068 to 0.107 with lowest in chickpea residue and highest in wheat straw amended soil. CH4 consumption rates (ng CH4 consumed g/soil/day) was highest (0.79) in wheat straw amended soil and lowest (0.53) in chickpea residue amended soil. Organic carbon (%) and available NO3 (mM) contents increased significantly (P > 0.05) in residue amended soils over control under both flooded (methanogenic) and non-flooded (methane consuming) conditions. Abundance of methanogens and methanotrophs was estimated as mcr and pmoA gene copies g−1 soil, indicated that both the microbial groups were stimulated significantly due to the amendment of crop residues. Linear models exhibited significant correlation among CH4 production and consumption with organic carbon, available nitrate and microbial abundance. The study highlights that crop residues incorporation influences both CH4 consumption and production potential of soil and this effect is more pronounced with biomass of cereals than legumes.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3