Efficiencies of nitrogen fertilizers for winter cereal production, with implications for greenhouse gas intensities of grain

Author:

SYLVESTER-BRADLEY R.,KINDRED D. R.,WYNN S. C.,THORMAN R. E.,SMITH K. E.

Abstract

SUMMARYFertilizer nitrogen (N) accounts for the majority of the greenhouse gas (GHG) emissions associated with intensive wheat production, and the form of fertilizer N affects these emissions. Differences in manufacturing emissions (as represented in the current carbon accounting methodologies) tend to favour urea, even when using the best available manufacturing technologies (BAT), whereas differences in fertilizer N efficiency and emissions of ammonia tend to favour ammonium nitrate (AN). To resolve these differences, data from 47 experiments in two large UK studies conducted from 1982 to 1987 and from 2003 to 2005 were reanalysed, showing that on average urea efficiency was 0·9 of AN (although mean ammonia emissions in 10 subsidiary experiments indicated an efficiency difference of 0·2); treating urea with a urease inhibitor (TU; AGROTAIN®, active ingredient N-(n-butyl) thiophosphoric triamide (n-BTPT)) brought its efficiency almost in line with AN; however, a significantly greater mean optimum N amount for TU (+0·1 of AN) was not fully explained. A standard response function relating wheat yield to applied AN was modified for degrees of relative inefficiency, thus enabling yields and GHG intensities (kg CO2e/tonne (t) grain) to be calculated using a PAS2050 compatible model for GHG emissions for any N amount of any N form. With AN manufactured by average European technology (AET), the estimated GHG intensity of wheat producing 8 t/ha was 451 kg/t; whereas with urea or TU made by AET it was 0.87–0.99 or 0.84–0.86 of this respectively. Using BAT for fertilizer manufacture, the grain's GHG intensity with AN and TU was 368 kg/t, but was 1·03–1·17 of this with untreated urea. The range of effects on GHG intensities arose mainly from remaining uncertainties in the inefficiencies of the N forms. Generally, economic margins and GHG intensities were not much affected by adjustments in N use for relative inefficiencies or different prices of urea-based fertilizers compared with AN. Overall, TU appeared to provide the best combination of economic performance and GHG intensity, unless the price for N as TU exceeded that for N as AN.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3