Treatment comparisons in agricultural field trials accounting for spatial correlation

Author:

RICHTER C.,KROSCHEWSKI B.,PIEPHO H.-P.,SPILKE J.

Abstract

SUMMARYThe classical analysis model for agricultural field trials is based on the principles of experimental design – randomization, replication and blocking – and it assumes independent residual effects. Accounting for any existent spatial correlation as an add-on component may be beneficial, but it requires selection of a suitable spatial model and modification of classical tests of treatment contrasts. Using a sugar beet trial laid out in complete blocks for illustration, it is shown that tests obtained with different modifications yield diverging results. Simulations were performed to decide whether different test modifications lead to valid statistical inferences. For the spherical, power and Gaussian models, each with six different values of the range parameter and without a nugget effect, the suitability of the following modifications was studied: a generalization of the Satterthwaite method (1941), the method of Kenward and Roger (1997), and the first-order corrected method described by Kenward and Roger (2009). A second-order method described by Kenward and Roger (2009) is also discussed and detailed results are provided as Supplemental Material (available at: http://journals.cambridge.org/AGS). Simulations were done for experiments with 10 or 30 treatments in complete and incomplete block designs. Model selection was performed using the corrected Akaike information criterion and likelihood-ratio tests. When simulation and analysis models were identical, at least one of the modifications for the t-test guaranteed control of the nominal Type I error rate in most cases. When the first-order method of Kenward and Roger was used, control of the t-test Type I error rate was poor for 10 treatments but on average very good for 30 treatments, when considering the best-fitting models for a given simulation setting. Results were not satisfactory for the F-test. The more pronounced the spatial correlation, the more substantial was the gain in power compared to classical analysis. For experiments with 20 treatments or more, the recommendation is to select the best-fitting model and then use the first-order method for t-tests. For F-tests, a randomization-based model with independent error effects should be used.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3