Genotype–environment interaction of lovegrass forage yield in the semi-arid region of Argentina

Author:

IBAÑEZ M. A.,DI RENZO M. A.,SAMAME S. S.,BONAMICO N. C.,POVERENE M. M.

Abstract

Genotype–environment interaction and yield stability were evaluated for 19 genotypes of lovegrass (Eragrostis curvula). The study was conducted in the central semi-arid region of Argentina. Three locations and two growing seasons in combination generated six environments. Genotypic responses and stability of yield under variable environments were investigated. The genotype–environment interaction was analysed by three methods: regression analysis, AMMI and principal coordinates analysis (PCO). Analysis of variance showed that effects of genotype, environment and genotype–environment interaction were highly significant (P < 0·01). The genotypes accounted for 20% of the treatment sum of squares, with environment responsible for 65% and interaction for 14·5%. The biplot indicated that there was partial agreement between the AMMI and regression model. However the scatter point diagrams obtained from PCO analysis revealed only limited agreement with the results obtained by the regression analysis and the AMMI model. The results show that the AMMI model as a whole explained twice as much of the interaction sum of squares as did regression analysis and was more adequate than PCO analysis in quantifying environment and genotype effects for forage yield. AMMI analysis of the genotype–environment interaction effects showed that there were responses characteristic of a particular location. This type of association implies some predictability of genotype–environment interaction effects on forage yield production when differential responses across genotypes are associated with locations. Environmental factors may contribute to the interpretations of genotype–environment interaction. However in the semi-arid region, where fluctuations in growing conditions are unpredictable, additional research is required to obtain an integration of interaction analysis with external environmental (or genotypic) variables.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3