Modelling cross-species feed intake responses to thermal stress

Author:

WHITE R. R.,HANIGAN M. D.

Abstract

SUMMARYThe objectives of the current study were to compare and model feed intake responses to ambient temperature across species and to assess opportunities to use cross-species (CS) data to parameterize models when species-specific (SS) data were limited. Literature searches were conducted to identify studies reporting intake during thermal stress compared with thermoneutral (TN) conditions. The resulting data set comprised 614 treatment means from 108 studies on livestock responses to thermal stress. An analysis of variance was conducted with the CS data set to identify the effects of species, temperature and species by temperature interactions on intake as (fractional feed intake; FFI). Four models were derived from the CS data set and root mean squared prediction error (RMSPE) and concordance correlation coefficients (CCC) of these models were compared with models of the same form derived from SS data sets. Models used explanatory variables for (1) duration of exposure; (2) mean temperature; (3) minimum and maximum temperatures; or (4) difference between minimum and maximum temperatures. An additional model accounting for temperature and stage of production was derived from the SS data. Analysis of variance demonstrated that the species by temperature interaction did not have a significant effect on FFI. Across species, intake decreased with temperature. Notably, all species demonstrated a constant decrease in intake across the TN zone indicating the previous assumption of constant intake during thermoneutrality may be not fully valid. When compared on a SS basis, SS-derived models had marginally lower RMSPE and higher CCC when compared with models derived from the CS data sets. The model fit with production data had the lowest RMSPE and highest CCC within the study. When compared over temperature ranges with minimal data available in some species (e.g., cold stress), using CS models often resulted in decreased RMSPE and improved CCC when compared with SS models. Although fitting models based on SS data allows for incorporating unique covariates, like level of production, fitting responses based on CS data can help to improve model estimates when knowledge gaps exist.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Warmer ambient temperatures reduce protein intake by a mammalian folivore;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-10-16

2. Food intake: an overlooked driver of climate change casualties?;Trends in Ecology & Evolution;2021-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3