Experiments on the spacing of sugar beet: I. Results based on plot yields

Author:

Garner F. H.,Sanders H. G.

Abstract

Since sugar beet was first introduced into this country many experiments have been conducted to determine the effects of spacing on yield: the general advice based on these experiments is that beet should be spaced as closely as working conditions permit. Davies (1931) carried out a series of experiments in the West Midlands, and came to the conclusion that yield was not related to the number of roots per acre, but was affected by their distribution. His work demonstrated that wide row distances could not be compensated by narrow spacing in the row. He found that yield increased as row distance decreased down to 16 in., but that singling distances of 4—10 in. produced no differences in yield of roots: the yield of green leaves, on the other hand, was increased as singling distance decreased, but was unaffected by row distance (Davies & Dudley, 1929). Although Davies' results would be generally accepted as a true expression of the general rule, many isolated spacing experiments fail to conform to them; it is possible that discrepancies in results, that undoubtedly occur, may be due to variations in the “plant” actually obtained in the experiments. Engledow et al. (1928), as a result of counts and weights taken on ordinary farm crops of sugar beet, concluded that uniformity of “plant” was a most important spacing factor affecting yield. In America Brewbaker & Deming (1935) have found yield to be related to percentage stand (correlation coefficients varying from +0·35 to +0·70), the regression between the two variables being approximately linear over the range studied. They also found that uniformity of “plant” was more important than spacing distances, either between or in the rows. Their work showed that single gaps had little effect on yield, because neighbouring beet compensated for them to the extent of 96·2%; serious loss of yield only occurred, therefore, with adjacent gaps. Pedersen (1933) studied the relationship between percentage of gaps and yield in a large number of Danish experiments with sugar beet and mangolds. In the case of sugar beet he found that the compensatory growth of neighbouring roots amounted to 76% for a single gap, and that the percentage compensation decreased as the size of gap (i.e. number of missing beet) increased. In an earlier paper (Pedersen, 1931) he had shown that under ordinary field conditions the distribution of gaps was approximately random.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Reference6 articles.

1. Pedersen A. (1931). Medd. Vethojsk. afd Landbrugets Plantedyrkning, No. 9.

2. Yield and plant population in sugar beet

3. Pedersen A. (1933). Medd. Vethojsk. afd Landbrugets Plantedyrkning, No. 10.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3