Comparison of supplemental cobalt form on fibre digestion and cobalamin concentrations in cattle

Author:

WATERMAN R. C.,KELLY W. L.,LARSON C. K.,PETERSEN M. K.

Abstract

SUMMARYCobalt (Co) is essential for rumen microbial metabolism to synthesize methane, acetate and methionine. It also serves as a structural component of vitamin B12(cobalamin), which functions as a coenzyme in energy metabolism. A study was conducted to determine if Co form (carbonatev. glucoheptonate) supplemented above the National Research Council requirements would improve digestibility of a low-quality forage diet and change serum cobalamin concentrations. Nineteen ruminally cannulated cows (577 ± 13 kg) were fed individually in a completely randomized experimental design. Cows were fed a grass hay diet that contained (79·2 g/kg crude protein, 565 g/kg total digestible nutrients, 633·2 g/kg neutral detergent fibre (NDF), 874·2 g/kg dry matter) at a rate of 0·02% of body weight on a as fed basis for a 62-day study, which consisted of three periods; acclimation (AC), treatment (TR) and residual (RE). Measurements taken in the AC period were used as covariates for analysis in the TR and RE periods. Cows were stratified by age (5 ± 0·4 years) and lactational history, and assigned to receive 12·5 mg supplemental Co in one of two forms: (1) 27·2 mg of Co carbonate (CC,n= 11 cows) or (2) 50 mg of Co glucoheptonate (CGH,n= 8 cows). Supplement was administered daily via a gelatin capsule placed directly into the rumen 2 h after feeding. During the last 96 h of each period, forage digestibility was measured using anin situnylon bag technique. Blood samples were collected 4 and 6 h following feeding, and 24 h before the end of each period. A treatment × period interaction was detected forin situorganic matter (OM) disappearance at 96 h; (TR period: 684 and 708 ± 81 g/kg; RE period: 676 and 668 ± 75 g/kg, for CC and CGH, respectively). Once inclusion of Co in the CGH group was removed, OM disappearance was reduced by 4·01% compared with 0·82% in the CC cows. The NDF disappearance (OM basis) was less for the TR compared with the RE at 48 h (629 and 652 ± 39 g/kg, respectively). However, by 96 h NDF disappearance was greater for TR than the RE (704 and 689 ± 44 g/kg; respectively). No differences were detected for cobalamin serum concentrations or rate of fibre fermentation. The outcomes of the current research signify that there may be a slight residual effect of Co supplementation on fermentation; there was also an indication that Co source may enhance the overall extent of fermentation.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3