Genomic evaluation of threshold traits in different scenarios of threshold number using parametric and non-parametric statistical methods

Author:

Ghasemi M.,Ghafouri-Kesbi F.ORCID,Zamani P.

Abstract

AbstractThe aim was to study the effect of the threshold number on the accuracy of genomic evaluation of the threshold traits using support vector machine (SVM), genomic best linear unbiased prediction (GBLUP) and Bayesian method B (BayesB). For this purpose, a genome consisting of three chromosomes was simulated for 1000 individuals on which 3000 bi-allelic single nucleotide polymorphism markers were evenly distributed. Genomic breeding values were predicted in different scenarios of threshold number (1–6 thresholds), QTL number (30 and 300 QTLs) and heritability level (0.1, 0.3 and 0.5). By increasing the number of thresholds from 1 to 6 thresholds, especially at higher levels of heritability, the accuracy of genomic evaluation increased; however, the increase in accuracy was not linear so that it was much more noticeable when the number of thresholds increased from 1 to 2 thresholds. In the most studied scenarios, SVM showed a very poor performance compared to other methods. BayesB ranked first regarding prediction accuracy, though in some cases the observed differences with GBLUP was not significant. While increase in heritability increased the accuracy of genomic evaluation, change in the QTL number had a slight effect on the prediction accuracy. According to the results, the SVM is not recommended for genomic evaluation of threshold traits, especially those which have only one threshold and instead, use of GBLUP and BayesB is recommended. For traits with more than one threshold, fortunately we can achieve accuracy similar to continuous traits by applying traditional genomic evaluation methods.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Reference40 articles.

1. Technow, F (2013) hypred: Simulation of genomic data in applied genetics. Available at http://cran.r-project.org/web/packages/hypred/index.html (Accessed 20 October 2013).

2. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries;Van Tassell;Nature Methods,2008

3. The Elements of Statistical Learning

4. Genomic selection: prediction of accuracy and maximisation of long term response;Goddard;Genetica,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3