Effect of potassium fertilizer on the yield, quality and potassium offtake of sugar beet crops grown on soils of different potassium status

Author:

MILFORD G. F. J.,ARMSTRONG M. J.,JARVIS P. J.,HOUGHTON B. J.,BELLETT-TRAVERS D. M.,JONES J.,LEIGH R. A.

Abstract

The effect of different rates of potassium (K) fertilizer on the yield and quality of sugar beet was studied in a series of 26 trials on soils of different type and K index between 1992 and 1997. There were few yield responses even though the majority of trials were on soils of low K index, and large quantities of fertilizer were applied (0–600 kg K/ha). Potassium offtakes (kg/ha) in the harvested beet increased asymptotically, not linearly, with yield and were much larger for a given yield on high K index soils than on low index soils. Commercially acceptable concentrations of beet K for processing are in the range 700 to 1000 mg K/100 g sugar. Concentrations in excess of this decrease the amount of sugar crystallized from the extracted juice. They were not greatly affected by large applications of fertilizer K but were strongly influenced by long-established differences in soil exchangeable K (Kex) due to soil type, previous cropping or manuring history.The asymptotic nature of the K offtake[ratio ]yield relationship was confirmed by factory tarehouse measurements relating to the national sugar beet crop delivered during the 1993–97 UK processing campaigns. Potassium offtakes generally increased linearly with yield up to 60–70 adjusted t of clean beet/ha, but increased little beyond that. The amount of K removed by a 60–70 t/ha crop of beet varied from 70 kg K/ha on low K index sandy loams to 120 kg K/ha on clay soils of K index 3 and above. Further increases in yield decreased the amount of K in fresh beet from 1·7 to 1·4 kg K/t on low K index soils, and from 3·6 to 2·5 kg K/t on high K index soils.An analysis of data from individual fields of commercially grown sugar beet showed that much of the site and season variation in the K content of beet was due to differences in K uptake driven by Kex, and to differential effects of nitrogen (N) supply on K uptake and sugar yield. Regressions on Kex and total crop N (kg/ha) accounted for c. 30 and 50% of the variance in beet K content, respectively, and the two together for over 60%. Total N uptake by the crops ranged from 100 to 550 kg N/ha. The total K content of the crop and the amounts of K in the beet (kg/ha) both increased linearly with crop N over the whole of this range, whereas sugar yield increased asymptotically with total uptakes of N up to 250–300 kg N/ha. Consequently, low yielding crops grown on soils in which N and K were freely available produced beet of poor K quality. However, the asymptotic relationship between beet K (kg/ha) and yield implies that, in many situations, the processing quality of the beet could be improved by increasing yield through better agronomy.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3