Influence of sowing rate on dry matter yield, plant density and survival of lucerne (Medicago sativa) under dryland and irrigated conditions

Author:

Thompson D. J.,Stout D. G.

Abstract

SUMMARYLucerne (Medicago sativa L.) sowing rates were evaluated to determine how environmental conditions affect seedling establishment and plant survival. Lucerne (cv. Peace) was sown during 1988 at rates ranging from 2·8 to 11·2 kg ha-1 at one irrigated and two dryland sites (a forest and a mid-elevation grassland site) near Kamloops, British Columbia, Canada. Dry matter (DM) yield was measured for 3 years, and plants were counted to estimate seedling establishment and plant survival. Sowing year DM yield increased linearly with sowing rate at the irrigated and forest sites, but at the mid-elevation grassland site it decreased at sowing rates > 5·6 kg ha-1. In the first full-production year, DM yield levelled off at sowing rates > 8·4 kg ha-1 at the irrigated site and was not affected by sowing rate at the forest site. At the grassland site, first full-production year DM yield decreased at sowing rates > 2·8 kg ha-1. In the second full-production year, there was a linear effect of sowing rate on DM yield at the irrigated site, but it did not affect DM yield at the two dryland sites. At all sites, the percentage of seedlings that survived to the end of the second growing season decreased curvilinearly as seedling density increased. Survival was less at the irrigated site than at the dryland sites. Higher sowing rates are required at irrigated sites than at dryland sites to obtain maximum yield or a required plant population density.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3