Quantitative trait loci mapping for plant architecture traits across two upland cotton populations using SSR markers

Author:

LI C.,SONG L.,ZHAO H.,XIA Z.,JIA Z.,WANG X.,DONG N.,WANG Q.

Abstract

SUMMARYCotton plant architecture is an important agronomic trait affecting yield and quality. In the present study, two F2:3 upland cotton (Gossypium hirsutum L.) populations were developed from Baimian2/TM-1 and Baimian2/CIR12 to map quantitative trait loci (QTL) for cotton plant architecture traits using simple sequence repeat (SSR) markers. A total of 73 QTL (37 significant and 36 suggestive) affecting plant architecture traits were detected in both populations. Four common QTL, qTFN-17 for total fruit nodes, qFBN-17 for fruit branch nodes, qFBL-17 for fruit branch length and qTFB-17a/qTFB-17b (qTFB-17) for total fruit branches, were found across the two populations. These common QTL should have high reliability and could be used for marker-assisted selection (MAS) to facilitate cotton plant architecture. The two common QTL, qTFN-17 and qFBL-17, were especially significant in both populations, and moreover, they explained >0·100 of the phenotypic variation in at least one population. These two QTL should be considered preferentially for MAS. The synergistic alleles and the negative alleles could be utilized in cotton plant architecture breeding programmes according to specific breeding objectives.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Reference49 articles.

1. QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L.

2. Inheritance analysis on earliness components of short season cotton varieties in G. hirsutum;Yu;Scientia Agricultura Sinica,1990

3. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers

4. Towards the Understanding of Complex Traits in Rice: Substantially or Superficially?

5. Tagging and mapping of QTL for yield and its components in upland cotton (Gossypium hirsutum L.) population with varied lint percentage;Li;Cotton Science,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3