Abstract
SummarySubstrates for mushroom cultivation were prepared, following a 2 day mixing and blending process, in bulk tunnels under a controlled temperature regime using forced ventilation. The temperature regime was based on a conventional bulk tunnel composting process, i.e. pasteurization at 60 °C for 6 h, followed by a conditioning phase at 47 °C until the substrate was clear of ammonia. With the exception of ammonia, which increased with increasing compost nitrogen content, this process did not result in strong odours. The substrates were ready for inoculation with mushroom ‘spawn’ 7–12 days after the initial mixing of the compost ingredients. Increasing the compost nitrogen content from 1·1 to 2·5% of the dry matter by increasing the quantity of deep litter poultry manure added to straw in the ingredients resulted in a greater subsequent yield of mushrooms. Further increases in the substrate nitrogen content resulted in prolonged tunnel processing times, substrate desiccation, incomplete clearance of ammonia from the substrate and subsequently low or no mushroom yields. Substrate bulk density at the time of spawning decreased with increasing nitrogen content, but was increased by chopping the straw ingredient. Mushroom yields from composts prepared with barley straw were significantly lower than those from wheat straw composts, at equivalent nitrogen contents. Supplementation of prepared substrates with the proprietary protein-rich ingredient, Betamyl 1000, increased yields by 13·6%.
Publisher
Cambridge University Press (CUP)
Subject
Genetics,Agronomy and Crop Science,Animal Science and Zoology
Reference33 articles.
1. Improvement of indoor short composting;Houdeau;Mushroom Science,1991
2. Water relations in indoor compost;Gerrits;Mushroom Science,1991
3. Indoor Static Composting for Mushroom (Agaricus Bisporus Lge Sing) Cultivation
4. Oxygen measurements in a mushroom compost stack
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献