A dynamic model for the effects of potassium and nitrogen fertilizers on the growth and nutrient uptake of crops

Author:

Barnes A.,Greenwood D. J.,Cleaver T. J.

Abstract

SummaryA dynamic model has been derived to predict the day-to-day changes in the growth and nutrient composition of crops grown in the field with different levels of nitrogen and potassium fertilizer. Equations are included in the model to represent processes such as re-distribution of nutrients down the soil profile after rain or evapotranspiration, transformations between the various forms of potassium, transport of potassium ions through the soil to the roots and the dependence of growth and nutrient uptake on incoming radiation, plant composition, and soil water stress.The model was tested by using it to forecast the responses of a test crop, cabbage, to fertilizers in four separate field experiments at WeUesbourne. From data describing the initial soil conditions and weights of the plant, the soil and crop characteristics and the daily weather conditions, the model correctly predicted the pattern of responses in each experiment, although, in some instances the absolute values of the theoretical and experimental yields differed somewhat. Of special significance was the ability of the model to forecast the effects of different weather conditions on crop response and the interactions between the effects of N and K fertilizers on the growth and chemical composition of plants.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Reference51 articles.

1. Flame-photometric determination of calcium and magnesium in vegetables

2. Penman H. L. (1974). Physics Department. Rothamsted Experimental Station Report for 1973, part 1, pp. 37–42.

3. The influence of some external factors on growth and phosphate uptake of maize plants of different salt conditions;Alberda;Recueil des travaux botaniques Neerlandais,1949

4. Diagnosis and improvement of saline and alkaline soils;USDA Handbook,1954

5. PROCESSES IN THE ROOT ENVIRONMENT1

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3