Late Archaean Kenogamissi complex, Abitibi Subprovince, Ontario, Canada: doming, folding and deformation-assisted melt remobilisation during syntectonic batholith emplacement

Author:

Benn Keith

Abstract

ABSTRACTThe Kenogamissi complex represents a large exposure of folded Late Archaean crystalline crust exposed within the Abitibi Subprovince, Ontario, Canada. It is composed of an heterogeneous amphibolite-grade orthogneiss unit, and several generations of batholiths and plutons of tonalite, granodiorite and granite composition. Together, the various units represent granitic magmatism during the period from 2740 Ma to 2660 Ma. Structural mapping and petrographic studies were focused on the orthogneiss unit (2723 Ma), on the newly defined Roblin tonalitegranodiorite batholith (ca. 2713 Ma) and on the highly strained metavolcanic rocks within the deformation aureole that surrounds the Kenogamissi complex. Structural analysis indicates that the Kenogamissi complex was emplaced into the greenstones as a dome that caused severe flattening and recumbent F2 refolding of earlier F1 folds in the deformation aureole. Doming is interpreted to be caused by the emplacement and inflation of tonalite-granodiorite batholiths, such as the Roblin Batholith, into the actively folding Swayze greenstone belt. Continued regional folding resulted in F3 refolding of F1 and F2 in the deformation aureole. Continued regional folding also deformed and folded the Kenogamissi complex and resulted in further uplift and emplacement of the complex into the greenstone belt. The early-formed magmatic foliation and compositional layering in the Roblin Batholith were folded by F3 while the batholith was still a crystal mush, and an F3 axial-surface magmatic foliation was locally formed. Folding of the partially molten Roblin Batholith also resulted in the remobilisation of fractionated liquids into shear zones which formed on the limbs of the F3 magmatic folds. Similar structures are present in the orthogneiss unit and are interpreted to represent remobilisation of melts which intruded the orthogneiss at the time of emplacement of the Roblin Batholith. The formation of the dykes on sheared fold limbs may be attributed to increased dilatancy during localised shearing of the crystal mush. Deformation-assisted remobilisation and extraction of fractionated liquids, and the possible transport of the fractionated liquids to higher levels in the crystallising Roblin Batholith, may have played a role in its magmatic differentiation.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3