Abstract
ABSTRACTBounded by sutures and demonstrating a unique geological history and structure, the Lower Palaeozoic rocks of the Southern Uplands–Down–Longford form a definitive Caledonian suspect terrane. The geological history of the final closure of Iapetus is encrypted in their structural fabric.Across the terrane, NW-younging turbidites predominate but graptolites invariably indicate the presence of younger sediments to the SSE. This fundamental Southern Upland paradox is soluble only by recognizing many strike-parallel faults, dividing the terrane into more than thirty tracts, each with its own variant of the stratigraphy and structure, and each having a lateral extent far in excess of what might be expected from the probable mechanical strength of the composing sediments. Structural interpretations of the terrane's unique tectonostratigraphic pattern are critically reviewed and the accretionary prism model, modified by strong sinistral transpression from the late Llandovery onward, is preferred. Transpression was apparently triggered when the converging continents of Laurentia and Avalonia made solid contact, so establishing a mechanically effective coupling of sialic crustal elements beneath and across the closing Iapetus ocean basin.The geometry of the terrane's internal structural fabric is analysed. Tentative area-balancing calculations indicate a crustal shortening from a basin width of at least 1,000 km to the current terrane width of 75 km. Continuing sinistral transpression was expressed in fault reactivation and the development of a major shear zone. Late Palaeozoic strike-parallel extension produced W-facing half-grabens and the associated rotation may account for the easterly plunge of most fold axes.
Publisher
Cambridge University Press (CUP)
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献