Food intake, growth and body composition in Australian Merino sheep selected for high and low weaning weight. 3. Energy balance

Author:

Thompson J. M.,Parks J. R.

Abstract

ABSTRACTUsing a simplified energy balance equation, changes in energetic efficiency and energy expenditure were examined as a function of stage of maturity in rams and ewes from flocks of Merino sheep selected for high (weight-plus) and low (weight-minus) weaning weight and from a randomly bred control flock.Specific combustion energy of the body (i.e. MJ/kg of body weight) was an increasing linear function of stage of maturity, which increased at a slightly faster rate in the weight-minus than in the weight-plus animals (15·1 v. 13·1 MJ/kg per unit of maturity), and at a faster rate in ewes than in rams (17·2 v. 11·3 MJ/kg per unit of maturity). At maturity, all strains had a similar mean specific combustion energy (18·3 MJ/kg), whereas the ewes were greater than the rams (20·1 v. 16·6 MJ/kg).Thermochemical efficiency (TCE, defined as the gain in body energy per unit of metabolizable energy intake) was a quadratic function of stage of maturity. In the early post-weaning period, the weight-plus had a greater TCE than the weight-minus animals and the maximum TCE occurred at an earlier stage of maturity in the weight-plus than in the weight-minus animals (0·40 v. 0·45 maturity). The ewes had a higher TCE than the rams at all stages of maturity, although the differences decreased as the animals matured. The maximum TCE occurred at a later stage of maturity in the ewes than in the rams (0·46 v. 0·38 maturity).After scaling for differences in mature size there was little difference between the strains in the rate of energy expenditure, with the exception that at the later stages of maturity the weight-minus animals had a slightly greater rate of energy expenditure. After scaling for differences in mature size, the rams had a greater rate of energy expenditure than the ewes from weaning to maturity.

Publisher

Cambridge University Press (CUP)

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3