A Partially Auxetic Metamaterial Inspired by the Maltese Cross

Author:

Lim Teik-Cheng

Abstract

A partially-auxetic metamaterial is introduced, inspired by the Maltese cross. Each unit of this metamaterial consists of a pair of counter-rotating equal-armed crosses, which is interconnected to neighboring units via hinge rods and connecting rods. Based on linkage theory, the on-axes Poisson's ratio was established considering a two-fold symmetrical mechanism, while the (anti)tetrachiral mechanisms were identified for on-axes uniaxial compression. A shearing mechanism is suggested for pure shearing and diagonal loading of the metamaterial with square array. Results suggest that the approximated infinitesimal models are valid for the Poisson's ratio of the two-fold symmetrical and the (anti)tetrachiral mechanisms under on-axis tension and compression, respectively; however, the finite model is recommended for quantifying the Poisson's ratio under pure shear and off-axis loading. This metamaterial manifests microstructural trinity, in which three different loading modes result in three different groups of deformation mechanisms. Finally, suggestions are put forth for some unsolved predictive problems.

Publisher

Cambridge University Press

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of 2D re-entrant auxetic lattice structures with extreme elastic mechanical properties;Mechanics Based Design of Structures and Machines;2024-07-15

2. Auxetic Two‐Phase Chevron Mechanical Metamaterial;Advanced Engineering Materials;2024-06-24

3. Auxetic metamaterial pre-twisted helical nanobeams: vibrational characteristics;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2024-06-06

4. Energy Absorption Properties of Curved Wall Honeycombs Based on Neural Networks;Mechanics of Solids;2024-04

5. Metamaterials with step function Poisson's ratio at original state;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2024-02-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3