Abstract
Abstract
Fault propagation analysis is a process used to determine the consequences of faults residing in a computer system. A typical computer system consists of diverse components (e.g., electronic and software components), thus, the faults contained in these components tend to possess diverse characteristics. How to describe and model such diverse faults, and further determine fault propagation through different components are challenging problems to be addressed in the fault propagation analysis. This paper proposes an ontology-based approach, which is an integrated method allowing for the generation, injection, and propagation through inference of diverse faults at an early stage of the design of a computer system. The results generated by the proposed framework can verify system robustness and identify safety and reliability risks with limited design level information. In this paper, we propose an ontological framework and its application to analyze an example safety-critical computer system. The analysis result shows that the proposed framework is capable of inferring fault propagation paths through software and hardware components and is effective in predicting the impact of faults.
Funder
Advanced Research Projects Agency - Energy
Air Force Office of Scientific Research
Publisher
Cambridge University Press (CUP)
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering
Reference46 articles.
1. Avizienis, A , Laprie, J-C and Randell, B (2001) Fundamental concepts of computer system dependability. IARP/IEEE_RAS Workshop on Robot Dependability: Technological Challenge of Dependable Robots in Human Environments, pp.1–16.
2. The impact of digitalization on the future of control and operations
3. Concurrent error detection using watchdog processors-a survey
4. Self-checking detection and diagnosis of transient, delay, and crosstalk faults affecting bus lines
5. Allen, JD and Unicode Consortium (2007) OWL 2 Web Ontology Language, p. 1417.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献