An approach to a feature-based comparison of solid models of machined parts

Author:

CICIRELLO VINCENT A.,REGLI WILLIAM C.

Abstract

Solid models are the critical data elements in modern computer-aided design environments, because they describe the shape and form of manufactured artifacts. Their growing ubiquity has created new problems in how to effectively manage the many models that are now stored in the digital libraries for large design and manufacturing enterprises. Existing techniques from the engineering literature and industrial practice, such as group technology, rely on human-supervised encodings and classification; techniques from the multimedia database and computer graphics/vision communities often ignore the manufacturing attributes that are most significant in the classification of models. This paper presents our approach to comparing the manufacturing similarity assessments of solid models of mechanical parts based on machining features. Our technical approach is threefold: perform machining feature extraction, construct a model dependency graph (MDG) from the set of machining features, and partition the models in a database using a measure of similarity based on the MDGs. We introduce two heuristic search techniques for comparing MDGs and present empirical experiments to validate our approach using our testbed, the National Design Repository.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machining scheme selection technique for feature group based on re-optimized bacterial foraging algorithm;Journal of Industrial and Production Engineering;2024-06-04

2. Computer vision in manufacturing: a bibliometric analysis and future research propositions;The International Journal of Advanced Manufacturing Technology;2023-07-20

3. Industrial Machinery Components Classification: A Case of D-S Pooling;Symmetry;2023-04-19

4. Cycle Mutation: Evolving Permutations via Cycle Induction;Applied Sciences;2022-05-29

5. A methodology for part classification with supervised machine learning;Artificial Intelligence for Engineering Design, Analysis and Manufacturing;2018-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3