Challenges in the industrial implementation of generative design systems: An exploratory study

Author:

Nordin Axel

Abstract

AbstractThe aim of this paper is to investigate the challenges associated with the industrial implementation of generative design systems. Though many studies have been aimed at validating either the technical feasibility or the usefulness of generative design systems, there is, however, a lack of research on the practical implementation and adaptation in industry. To that end, this paper presents two case studies conducted while developing design systems for industrial uses. The first case study focuses on an engineering design application and the other on an industrial design application. In both cases, the focus is on detail-oriented performance-driven generative design systems based on currently available computer-assisted design tools. The development time and communications with the companies were analyzed to identify challenges in the two projects. Overall, the results show that the challenges are not related to whether the design tools are intended for artistic or technical problems, but rather in how to make the design process systematic. The challenges include aspects such as how to fully utilize the potential of generative design tools in a traditional product development process, how to enable designers not familiar with programming to provide design generation logic, and what should be automated and what is better left as a manual task. The paper suggests several strategies for dealing with the identified challenges.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Reference54 articles.

1. Robert McNeel & Associates. (2014). Grasshopper [Computer software]. Accessed at http://www.grasshopper3d.com/

2. Coumans E. (2015). Bullet Physics Library. Accessed August 6, 2015, at http://bulletphysics.org/

3. Towards an integrated generative design framework

4. A generative evolutionary design method

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3