Toward a cyber-physical manufacturing metrology model for industry 4.0

Author:

Stojadinovic Slavenko M.ORCID,Majstorovic Vidosav D.,Durakbasa Numan M.

Abstract

AbstractIndustry 4.0 represents high-level methodologies for the development of new generation manufacturing metrology systems, which are more intelligent (smart), autonomous, flexible, high-productive, and self-adaptable. One of the systems capable of responding to these challenges is a cyber-physical manufacturing metrology system (CP2MS) with techniques of artificial intelligence (AI). In general, CP2MS systems generate Big data, horizontally by integration [coordinate measuring machines (CMMs)] and vertically by control. This paper presents a cyber-physical manufacturing metrology model (CP3M) for Industry 4.0 developed by applying AI techniques such as engineering ontology (EO), ant-colony optimization (ACO), and genetic algorithms (GAs). Particularly, the CP3M presents an intelligent approach of probe configuration and setup planning for inspection of prismatic measurement parts (PMPs) on a CMM. A set of possible PMP setups and probe configurations is reduced to optimal number using developed GA-based methodology. The major novelty is the development of a new CP3M capable of responding to the requirements of an Industry 4.0 concept such as intelligent, autonomous, and productive measuring systems. As such, they respond to one smart metrology requirement within the framework of Industry 4.0, referring to the optimal number of PMPs setups and for each setup defines the configurations of probes. The main contribution of the model is productivity increase of the measuring process through the reduction of the total measurement time, as well as the elimination of errors due to the human factor through intelligent planning of probe configuration and part setup. The experiment was successfully performed using a PMP specially designed and manufactured for the purpose.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3