A study of the evaluation metrics for generative images containing combinational creativity

Author:

Wang Boheng,Zhu Yunhuai,Chen LiuqingORCID,Liu Jingcheng,Sun Lingyun,Childs PeterORCID

Abstract

AbstractIn the field of content generation by machine, the state-of-the-art text-to-image model, DALL⋅E, has advanced and diverse capacities for the combinational image generation with specific textual prompts. The images generated by DALL⋅E seem to exhibit an appreciable level of combinational creativity close to that of humans in terms of visualizing a combinational idea. Although there are several common metrics which can be applied to assess the quality of the images generated by generative models, such as IS, FID, GIQA, and CLIP, it is unclear whether these metrics are equally applicable to assessing images containing combinational creativity. In this study, we collected the generated image data from machine (DALL⋅E) and human designers, respectively. The results of group ranking in the Consensual Assessment Technique (CAT) and the Turing Test (TT) were used as the benchmarks to assess the combinational creativity. Considering the metrics’ mathematical principles and different starting points in evaluating image quality, we introduced coincident rate (CR) and average rank variation (ARV) which are two comparable spaces. An experiment to calculate the consistency of group ranking of each metric by comparing the benchmarks then was conducted. By comparing the consistency results of CR and ARV on group ranking, we summarized the applicability of the existing evaluation metrics in assessing generative images containing combinational creativity. In the four metrics, GIQA performed the closest consistency to the CAT and TT. It shows the potential as an automated assessment for images containing combinational creativity, which can be used to evaluate the images containing combinational creativity in the relevant task of design and engineering such as conceptual sketch, digital design image, and prototyping image.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Reference47 articles.

1. Evaluation of coco validation 2017 dataset with yolov3;Kim;Evaluation,2019

2. An artificial intelligence based data-driven approach for design ideation

3. The Nature of Human Creativity

4. Zhang, H , Yin, W , Fang, Y , Li, L , Duan, B , Wu, Z , … and Wang, H (2021) ERNIE-ViLG: unified generative pre-training for bidirectional vision-language generation. arXiv preprint arXiv:2112.15283.

5. Cognition and Creativity

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3