Data-driven process planning for shipbuilding

Author:

Bao Jinsong,Zheng Xiaohu,Zhang Jianguo,Ji Xia,Zhang Jie

Abstract

AbstractErection planning in shipbuilding is a highly complex process. When a process change happens for some reason, it is often difficult to identify how many factors are affected and estimate how sensitive these factors can be. To optimize the planning and replanning of the shipbuilding plan for the best production performance, a data-driven approach for shipbuilding erection planning is proposed, which is composed of an erection plan model, identification of major factors related to the erection plan, and a data-driven algorithm to apply shipbuilding operation data for creating plans and forecasting, for plan adjustment, future availabilities of shipyard resources including machines, equipment, and man power. Through data clustering, the relevant factors are identified as a result of plan change, and critical equipment health management is carried out through data-driven anomaly detection. A case study is implemented, and the result shows that the proposed data-driven method is able to reschedule the shipbuilding plans smoothly.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic weld joint type recognition in intelligent welding using image features and machine learning algorithms;Artificial Intelligence for Engineering Design, Analysis and Manufacturing;2023

2. Large data for design research: An educational technology framework for studying design activity using a big data approach;Frontiers in Manufacturing Technology;2022-10-20

3. DATA DRIVEN PERFORMANCE EVALUATION IN SHIPBUILDING;Brodogradnja;2020-10-01

4. Control Chart Pattern Recognition of Sheet Metal Cutting Data in Shipbuilding Based on XGBoost;2020 IEEE 16th International Conference on Automation Science and Engineering (CASE);2020-08

5. Calculation of coating consumption quota for ship painting: a CS-GBRT approach;Journal of Coatings Technology and Research;2020-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3