A graph-theoretic implementation of the Rabo-de-Bacalhau transformation grammar

Author:

Strobbe Tiemen,Eloy Sara,Pauwels Pieter,Verstraeten Ruben,De Meyer Ronald,Van Campenhout Jan

Abstract

AbstractShape grammars are rule-based formalisms for the specification of shape languages. Most of the existing shape grammars are developed on paper and have not been implemented computationally thus far. Nevertheless, the computer implementation of shape grammar is an important research question, not only to automate design analysis and generation, but also to extend the impact of shape grammars toward design practice and computer-aided design tools. In this paper, we investigate the implementation of shape grammars on a computer system, using a graph-theoretic representation. In particular, we describe and evaluate the implementation of the existing Rabo-de-Bacalhau transformation grammar. A practical step-by-step approach is presented, together with a discussion of important findings noticed during the implementation and evaluation. The proposed approach is shown to be both feasible and valuable in several aspects: we show how the attempt to implement a grammar on a computer system leads to a deeper understanding of that grammar, and might result in the further development of the grammar; we show how the proposed approach is embedded within a commercial computer-aided design environment to make the shape grammar formalism more accessible to students and practitioners, thereby increasing the impact of grammars on design practice; and the proposed step-by-step implementation approach has shown to be feasible for the implementation of the Rabo-de-Bacalhau transformation grammar, but can also be generalized using different ontologies for the implementation.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3