An explicit methodology for manufacturing cost–tolerance modeling and optimization using the neural network integrated with the genetic algorithm

Author:

Saravanan A.ORCID,Jerald J.,Carolina Rani A. Delphin

Abstract

AbstractThe objective of the paper is to develop a new method to model the manufacturing cost–tolerance and to optimize the tolerance values along with its manufacturing cost. A cost–tolerance relation has a complex nonlinear correlation among them. The property of a neural network makes it possible to model the complex correlation, and the genetic algorithm (GA) is integrated with the best neural network model to optimize the tolerance values. The proposed method used three types of neural network models (multilayer perceptron, backpropagation network, and radial basis function). These network models were developed separately for prismatic and rotational parts. For the construction of network models, part size and tolerance values were used as input neurons. The reference manufacturing cost was assigned as the output neuron. The qualitative production data set was gathered in a workshop and partitioned into three files for training, testing, and validation, respectively. The architecture of the network model was identified based on the best regression coefficient and the root-mean-square-error value. The best network model was integrated into the GA, and the role of genetic operators was also studied. Finally, two case studies from the literature were demonstrated in order to validate the proposed method. A new methodology based on the neural network model enables the design and process planning engineers to propose an intelligent decision irrespective of their experience.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3