Research on the information transfer characteristics of dimensions in the product variant design process

Author:

Xu Xinsheng,Yan Tianhong,Ding Yangke

Abstract

AbstractProduct variant design, as one of the key enabling technologies of mass customization, is the transfer of variant information among mating parts from the perspective of informatics. A dimension constraint network (DCN) among mating parts carries on the task of transferring variant information. What are the information transfer characteristics of dimensions in a constraint network is a fundamental issue to plan the product variant design process reasonably. We begin by showing the natural dynamics of the DCN from two aspects: structure and uncertainty. The information efficiency of the DCN was proposed based on its simple path to specify the information transfer capability of the network. Based on this, the information centrality of the dimension was developed by measuring the efficiency loss of the DCN after the removal of a dimension from the network, which describes the information transfer capability of this dimension. Further, the information centrality of a part was derived. Using a spherical valve subassembly, we calculated the information centrality of the dimensions in a constraint network. We determined that the information centrality of dimension is highly correlated to its out-degree. An approach to plan the sequence of the part variant design according to its information centrality was proposed. We calculated the uncertainties of the DCN and its cumulative uncertainties under different sequences of the part variant design. Results indicate that part variant design under the descending information centrality of the parts minimizes the uncertainty of the DCN. This suggests a new method of planning the sequence of part variant design.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Reference48 articles.

1. Zha X. , & Sriram R.D. (2004). Collabarative product development and customization: a platform-based strategy and implementation. Proc. ASME Design Engineering Conf. Computers and Information in Engineering Conf., pp. 1–12, Salt Lake City, UT, September 28–October 2.

2. Product portfolio identification based on association rule mining

3. Joint optimization of product family configuration and scaling design by Stackelberg game

4. Variant design as a method of automating the design process

5. A Variation-Based Method for Product Family Design

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3