A semantic similarity-based method to support the conversion from EXPRESS to OWL

Author:

Liu YanORCID,Jian Qingquan,Eckert Claudia M.

Abstract

Abstract Product data sharing is fundamental for collaborative product design and development. Although the STandard for Exchange of Product model data (STEP) enables this by providing a unified data definition and description, it lacks the ability to provide a more semantically enriched product data model. Many researchers suggest converting STEP models to ontology models and propose rules for mapping EXPRESS, the descriptive language of STEP, to Web Ontology Language (OWL). In most research, this mapping is a manual process which is time-consuming and prone to misunderstandings. To support this conversion, this research proposes an automatic method based on natural language processing techniques (NLP). The similarities of language elements in the reference manuals of EXPRESS and OWL have been analyzed in terms of three aspects: heading semantics, text semantics, and heading hierarchy. The paper focusses on translating between language elements, but the same approach has also been applied to the definition of the data models. Two forms of the semantic analysis with NLP are proposed: a Combination of Random Walks (RW) and Global Vectors for Word Representation (GloVe) for heading semantic similarity; and a Decoding-enhanced BERT with disentangled attention (DeBERTa) ensemble model for text semantic similarity. The evaluation shows the feasibility of the proposed method. The results not only cover most language elements mapped by current research, but also identify the mappings of the elements that have not been included. It also indicates the potential to identify the OWL segments for the EXPRESS declarations.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3