A dynamic semisupervised feedforward neural network clustering

Author:

Asadi Roya,Kareem Sameem Abdul,Asadi Shokoofeh,Asadi Mitra

Abstract

AbstractAn efficient single-layer dynamic semisupervised feedforward neural network clustering method with one epoch training, data dimensionality reduction, and controlling noise data abilities is discussed to overcome the problems of high training time, low accuracy, and high memory complexity of clustering. Dynamically after the entrance of each new online input datum, the code book of nonrandom weights and other important information about online data as essentially important information are updated and stored in the memory. Consequently, the exclusive threshold of the data is calculated based on the essentially important information, and the data is clustered. Then, the network of clusters is updated. After learning, the model assigns a class label to the unlabeled data by considering a linear activation function and the exclusive threshold. Finally, the number of clusters and density of each cluster are updated. The accuracy of the proposed model is measured through the number of clusters, the quantity of correctly classified nodes, and F-measure. Briefly, in order to predict the survival time, the F-measure is 100% of the Iris, Musk2, Arcene, and Yeast data sets and 99.96% of the Spambase data set from the University of California at Irvine Machine Learning Repository; and the superior F-measure results in between 98.14% and 100% accuracies for the breast cancer data set from the University of Malaya Medical Center. We show that the proposed method is applicable in different areas, such as the prediction of the hydrate formation temperature with high accuracy.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Reference75 articles.

1. Hebboul A. , Hacini M. , & Hachouf F. (2011). An incremental parallel neural network for unsupervised classification. Proc. 7th Int. Workshop on Systems, Signal Processing Systems and Their Applications (WOSSPA), Tipaza, Algeria, May 9–11, 2011.

2. Non-linear dimensionality reduction;DeMers;Advances in Neural Information Processing Systems,1993

3. Hazlina H. , Sameem A. , NurAishah M. , & Yip C. (2004). Back propagation neural network for the prognosis of breast cancer: comparison on different training algorithms. Proc. 2nd. Int. Conf. Artificial Intelligence in Engineering & Technology, pp. 445–449, Sabah, Malyasia, August 3–4.

4. An introduction to variable and feature selection;Guyon;Journal of Machine Learning Research,2003

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative analysis of machine learning algorithms for predicting standard time in a manufacturing environment;Artificial Intelligence for Engineering Design, Analysis and Manufacturing;2023

2. AutoClustering: A Feed-Forward Neural Network Based Clustering Algorithm;2018 IEEE International Conference on Data Mining Workshops (ICDMW);2018-11

3. Retracted: Cluster Analysis of Risk Factors from Near-Miss and Accident Reports in Tunneling Excavation;Journal of Construction Engineering and Management;2018-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3