Protobooth: gathering and analyzing data on prototyping in early-stage engineering design projects by digitally capturing physical prototypes

Author:

Erichsen Jorgen F.ORCID,Sjöman Heikki,Steinert Martin,Welo Torgeir

Abstract

AbstractAiming to help researchers capture output from the early stages of engineering design projects, this article presents a new research tool for digitally capturing physical prototypes. The motivation for this work is to collect observations that can aid in understanding prototyping in the early stages of engineering design projects, and this article investigates if and how digital capture of physical prototypes can be used for this purpose. Early-stage prototypes are usually rough and of low fidelity and are thus often discarded or substantially modified through the projects. Hence, retrospective access to prototypes is a challenge when trying to gather accurate empirical data. To capture the prototypes developed through the early stages of a project, a new research tool has been developed for capturing prototypes through multi-view images, along with metadata describing by whom, why, when, and where the prototypes were captured. Over the course of 17 months, this research tool has been used to capture more than 800 physical prototypes from 76 individual users across many projects. In this article, one project is shown in detail to demonstrate how this capturing system can gather empirical data for enriching engineering design project cases that focus on prototyping for concept generation. The authors also analyze the metadata provided by the system to give understanding into prototyping patterns in the projects. Lastly, through enabling digital capture of large quantities of data, the research tool presents the foundations for training artificial intelligence-based predictors and classifiers that can be used for analysis in engineering design research.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Reference48 articles.

1. Identification and application of requirements and their impact on the design process: a protocol study

2. The latent semantic approach to studying design team communication

3. Sonalkar, N , Jablokow, K , Edelman, J , Mabogunje, A and Leifer, L (2017) Design whodunit: The relationship between individual characteristics and interaction behaviors in design concept generation. ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, V007T06A009–V007T06A009. American Society of Mechanical Engineers.

4. A study on the effects of example familiarity and modality on design fixation;Viswanathan;AI EDAM,2016

5. A Document Analysis Method for Characterizing Design Team Performance

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3