Coevolutionary and genetic algorithm based building spatial and structural design

Author:

Hofmeyer Hèrm,Davila Delgado Juan Manuel

Abstract

AbstractIn this article, two methods to develop and optimize accompanying building spatial and structural designs are compared. The first, a coevolutionary method, applies deterministic procedures, inspired by realistic design processes, to cyclically add a suitable structural design to the input of a spatial design, evaluate and improve the structural design via the finite element method and topology optimization, adjust the spatial design according to the improved structural design, and modify the spatial design such that the initial spatial requirements are fulfilled. The second method uses a genetic algorithm that works on a population of accompanying building spatial and structural designs, using the finite element method for evaluation. If specific performance indicators and spatial requirements are used (i.e., total strain energy, spatial volume, and number of spaces), both methods provide optimized building designs; however, the coevolutionary method yields even better designs in a faster and more direct manner, whereas the genetic algorithm based method provides more design variants. Both methods show that collaborative design, for example, via design modification in one domain (here spatial) to optimize the design in another domain (here structural) can be as effective as monodisciplinary optimization; however, it may need adjustments to avoid the designs becoming progressively unrealistic. Designers are informed of the merits and disadvantages of design process simulation and design instance exploration, whereas scientists learn from a first fully operational and automated method for design process simulation, which is verified with a genetic algorithm and subject to future improvements and extensions in the community.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Reference51 articles.

1. A project model for an automated building system: design and planning phases

2. A design support tool for optimum building concept generation using a structured genetic algorithm;Rafiq;International Journal of Computer-Integrated Design and Construction,2000

3. A practical generative design method

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3