Machine learning for simulation-based support of early collaborative design

Author:

IVEZIC NENAD,GARRETT JAMES H.

Abstract

The research and development of a simulation-based decision support system (SB-DSS) capable of assisting early collaborative design processes is presented. The requirements for such a system are included. Existing collaborative DSSs are shown to lack the capability to manipulate complex simulation-based relationships. On the other hand, advances within the machine learning in design community are shown to have a potential for providing, but have not yet addressed, simulation-based support for collaborative design processes. The developed SB-DSS is described in terms of its four principal components. First, the behavior-evaluation (BE) model is used to both structure individual, domain-specific decision models and organize these models into a collaborative decision model. Second, a probabilistic framework for the BE model enables management of the uncertainty inherent in learning and using simulation-based knowledge. Significantly, this framework provides a constraint satisfaction environment in which simulation-based knowledge is used. Third, a statistical neural network approach is used to capture simulation-based knowledge and build the probabilistic behavior models based on this knowledge. Fourth, since a probability distribution theory does not exist for the nonlinear neural network approaches, Monte Carlo simulation is introduced as a method to sample the trained neural networks and approximate the likelihoods of design variable values. Consequently, constraint satisfaction problem-solving capability is obtained. In addition, a mapping of the SB-DSS architecture onto a collaborative design agent framework is provided. Experimental evaluation of a prototype SB-DSS system is summarized, and performance of the SB-DSS with respect to search and usability metrics is documented. Initial results in developing the simulation-based support for collaborative design are encouraging. Lastly, a categorization of the machine learning approach and a critique of the proposed categorization scheme is presented.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3