Author:
Yao Ke-Thia,Gelsey Andrew
Abstract
AbstractNumerical simulation of partial differential equations (PDEs) plays a crucial role in predicting the behavior-of physical systems and in modern engineering design. However, to produce reliable results with a PDE simulator, a human expert must typically expend considerable time and effort in setting up the simulation. Most of this effort is spent in generating the grid, the discretization of the spatial domain that the PDE simulator requires as input. To properly design a grid, the gridder must not only consider the characteristics of the spatial domain, but also the physics of the situation and the peculiarities of the numerical simulator. This article describes an intelligent gridder that is capable of analyzing the topology of the spatial domain and of predicting approximate physical behaviors based on the geometry of the spatial domain to automatically generate grids for computational fluid dynamics simulators. Typically, gridding programs are given a partitioning of the spatial domain to assist the gridder. Our gridder is capable of performing this partitioning. This enables the gridder to automatically grid spatial domains with a wide range of configurations.
Publisher
Cambridge University Press (CUP)
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multilevel modelling for engineering design optimization;Artificial Intelligence for Engineering Design, Analysis and Manufacturing;1997-11