Spatial synthesis by disjunctive constraint satisfaction

Author:

Baykan Can A.,Fox Mark S.

Abstract

AbstractThe spatial synthesis problem addressed in this paper is the configuration of rectangles in 2D space, where the sides of the rectangles are parallel to an orthogonal coordinate system. Variables are the locations of the edges of the rectangles and their orientations. Algebraic constraints on these variables define a layout and constitute a constraint satisfaction problem. We give a new O(n2) algorithm for incremental path-consistency, which is applied after adding each algebraic constraint. Problem requirements are formulated as spatial relations between the rectangles, for example, adjacency, minimum distance, and nonoverlap. Spatial relations are expressed by Boolean combinations of the algebraic constraints; called disjunctive constraints. Solutions are generated by backtracking search, which selects a disjunctive constraint and instantiates its disjuncts. The selected disjuncts describe an equivalence class of configurations that is a significantly different solution. This method generates the set of significantly different solutions that satisfy all the requirements. The order of instantiating disjunctive constraints is critical for search efficiency. It is determined dynamically at each search state, using functions of heuristic measures called textures. Textures implement fail-first and prune-early strategies. Extensions to the model, that is, 3D configurations, configurations of nonrectangular shapes, constraint relaxation, optimization, and adding new rectangles during search are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Reference35 articles.

1. Consistency in networks of relations;Mackworth;AI,1977

2. Automated space planning;Eastman;AI,1973

3. Enumerating architectural arrangements by generating their underlying graphs

4. On the Representation and Generation of Loosely Packed Arrangements of Rectangles

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced IDSS Topics and Applications;Intelligent Decision Support Systems;2022

2. Linked-Data based Constraint-Checking (LDCC) to support look-ahead planning in construction;Automation in Construction;2020-12

3. Incrementally closing octagons;Formal Methods in System Design;2018-01-24

4. Theory learning with symmetry breaking;Proceedings of the 19th International Symposium on Principles and Practice of Declarative Programming;2017-10-09

5. A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment;Renewable and Sustainable Energy Reviews;2017-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3