Function modeling combined with physics-based reasoning for assessing design options and supporting innovative ideation

Author:

Mokhtarian Hossein,Coatanéa Eric,Paris Henri

Abstract

AbstractFunctional modeling is an analytical approach to design problems that is widely taught in certain academic communities but not often used by practitioners. This approach can be applied in multiple ways to formalize the understanding of the systems, to support the synthesis of the design in the development of a new product, or to support the analysis and improvement of existing systems incrementally. The type of usage depends on the objectives that are targeted. The objectives can be categorized into two key groups: discovering a totally new solution, or improving an existing one. This article proposes to use the functional modeling approach to achieve three goals: to support the representation of physics-based reasoning, to use this physics-based reasoning to assess design options, and finally to support innovative ideation. The exemplification of the function-based approach is presented via a case study of a glue gun proposed for this Special Issue. A reverse engineering approach is applied, and the authors seek an incremental improvement of the solution. As the physics-based reasoning model presented in this article is heavily dependent on the quality of the functional model, the authors propose a general approach to limit the interpretability of the functional representations by mapping the functional vocabulary with elementary structural blocks derived from bond graph theory. The physics-based reasoning approach is supported by a mathematical framework that is summarized in the article. The physics-based reasoning model is used for discovering the limitations of solutions in the form of internal contradictions and guiding the design ideation effort.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Reference59 articles.

1. Frameworks for organising design performance metrics

2. State Variables and Pseudo Bond Graphs for Compressible Thermofluid Systems

3. Creativity As an Exact Science

4. Analysis and identifying requirements for physics-based reasoning on function structure graphs;Sen;Artificial Intelligence for Engineering Design,2013

5. Roza Z. (2005). Simulation fidelity theory and oractice . PhD Thesis. Delft University of Technology.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3