Tool life prediction via SMB-enabled monitor based on BPNN coupling algorithms for sustainable manufacturing

Author:

Chang Wen-YangORCID,Hsu Bo-Yao

Abstract

Abstract The predictive methods of tool wear are usually based on different algorithm predictors, different source data, and different sensing devices for remaining useful life (RUL). In general, it has challenges to model and ensure all of the cutting conditions that are suitable in the actual cutting process for sustainable manufacturing. In order to overcome the doing large amount of experimental data and predict different tool RULs, this study combines the analytical force modeling, the back-propagation neural network (BPNN) machine learning, and the current sensor which all are integrated in smart machine box (SMB) to realize the practical RUL prediction for on-line and real-time applications. The analytical model of the cutting force coefficients of shear and ploughing was established from average cutting forces, it could reduce the experimental number and predict the different cutting conditions. In general, the loading current of the cutting tool from a spindle motor is relatively easier acquired than the resultant forces. Thus, the loading currents of the spindle are used to train and predict the cutting forces using the BPNN model during intelligent manufacturing. The SMB architecture mainly performed the autonomous actions based on the edge layer, the fog layer, and the cloud layer via the TCP/IP, the MQTT protocol, and the unified communication library. Results showed that a predictive error for the ends of the tool life is about 3–10% that are based on the calculating of the cumulative current ratio.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3