Design synthesis knowledge and inductive machine learning

Author:

POTTER S.,DARLINGTON M.J.,CULLEY S.J.,CHAWDHRY P.K.

Abstract

A crucial early stage in the engineering design process is the conceptual design phase, during which an initial solution design is generated. The quality of this initial design has a great bearing on the quality and success of the produced artefact. Typically, the knowledge required to perform this task is only acquired through many years of experience, and so is often at a premium. This has led to a number of attempts to automate this phase using intelligent computer systems. However, the knowledge of how to generate designs has proved difficult to acquire directly from human experts, and as a result, is often unsatisfactory in these systems. The application of inductive machine learning techniques to the acquisition of this sort of knowledge has been advocated as one approach to overcoming the difficulties surrounding its capture. Rather than acquiring the knowledge from human experts, the knowledge would be inferred automatically from a set of examples of the design process. This paper describes the authors' investigations into the general viability of this approach in the context of one particular conceptual design task, that of the design of fluid power circuits. The analysis of a series of experiments highlights a number of issues that would seem to arise regardless of the working domain or particular machine learning algorithm used. These issues, presented and discussed here, cast serious doubts upon the practicality of such an approach to knowledge acquisition, given the current state of the art.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3